Menu du site

Nature Humaine (amocalypse)
Théorie>Formulaires>Grandeurs physiques>comparaison entre éléments

Première version: 22/12/2002
Dernière version: 2002-12-22

Grandeurs physiques
Comparaison des éléments

Voici ci-dessous plusieurs valeurs numériques des grandeurs physiques associées à différentes matières :

Sommaire de la page

-A -B -C -D -E -F -G -H -I -J -K -L -M -N -O -P -Q -R -S -T -U -V -W -X -Y -Z -

 

- A -



- B -



 

- C -

 

Carburants (caractéristiques): (tableaux issus du mémento Bosch)

Caractéristiques des carburants et des hydrocarbures liquides

Substance

Masse
volumique


kg/l

Principaux
composants


% masse

Température d'ébullition


°C

Chaleur d'évaporation spécifique

kJ/kg1)

Pouvoir
calorifique
inférieur

MJ/kg1)

Tempér-
ature
d'inflam-
mation

°C

Besoin théorique
en air

kg/kg

Limite
d'inflammabilité
% vol, de gaz
dans l'air

infé-
rieure

supé-
rieure

Essence ordinaire
Essence super
Essence aviation
Kérosène
Gazole

0,715...0,765

86C, 14 H

25...215

380...500

42,7

~300

14,8

~0,6

~8

0,730...0,780

86C, 14 H

25...215

-

43,5

~400

14,7

-

-

0,720

85 C, 15 H

40...180

-

43,5

~500

-

~0,7

~8

0,77...0,83

87C, 13 H

170...260

-

43

~250

14,5

~0,6

~7,5

0,815...0,855

86 C, 13 H

180...360

~250

42,5

~250

14,5

~0,6

~7,5

Pétrole brut

Huile de goudron de lignite
Huile de goudron de houille

0,70...1,0

80...83 C, 10...14H

25...360

222...352

39,8...46,1

~220

-

~0,6

~6,5

0,850...0,90

84C, 11 H

200...360

-

40,2...41,9

-

13,5

-

-

1,0...1,10

89 C, 7 H

170...330

-

36,4...38,5

-

-

-

-

Pentane C5H12
Hexane C6H14
Heptane C7H16

0,63

83 C, 17 H

36

352

45,4

285

15,4

1,4

7,8

0,66

84 C, 16 H

69

331

44,7

240

15,2

1,2

7,4

0,68

84 C, 16 H

98

310

44,4

220

15,2

1,1

6,7

Iso-octane C8H18
Benzène C6H6
Toluène C7H8

0,69

84 C,16 H

99

297

44,6

410

15,2

1

6

0,88

92 C,8 H

80

394

40,2

550

13,3

1,2

8

0,87

91 C, 9 H

110

364

40,6

530

13,4

1,2

7

Xylène C8H11
Ether (C2H5)2O
Acétone (CH3)2CO

0,88

91 C, 9 H

144

339

40,6

460

13,7

1

7,6

0,72

64 C, 14 H, 22 O

35

377

34,3

170

7,7

1,7

36

0,79

62 C, 10 C, 28 O

56

523

28,5

540

9,4

2,5

13

Ethanol C2H5OH
Methanol CH3OH

0,79

52 C, 13 H, 35 O

78

904

26,8

420

9

3,5

15

0,79

38 C, 12 H, 50 O

65

1110

19,7

450

6,4

5,5

28

Viscosité à 20°C en mm2/s (= cSt (centiStokes)) : essences ~0,6; gazole ~4; éthanol ~1,5; méthanol ~0,75.
1) Valeur /l = valeur /kg x masse volumique en kg/l.

Substance

Masse
volumique
à 0°C et
1013 mbar

kg/m3

Principaux
composants


% masse

Température d'ébullition à
1013 mbar

°C

Pouvoir calorifique inférieur

Tempér-
ature d'inflam-
mation
°C

Besoin théorique
en air
kg/kg

Limite
d'inflammabilité
% vol, de gaz
dans l'air

Carburant
MJ/kg1)

Mélange carburant-air
MJ/m3 1)

infé-
rieure

supé-
rieure

GPL
Gaz de ville
Gaz naturel

2,252)

C3H8, C4H10

-30

46,1

3,39

400

15,5

1,5

15

0,56...0,61

50 H, 8 CO, 30 CH4

-210

~30

~3,25

~560

10

4

40

~0,83

76 C, 24 H

-162

47,7

-

-

-

-

-

Gaz à l'eau
Gaz de haut fourneau
Gaz de curage (biogaz)3)

0,71

50 H, 38 CO

-

15,1

3,10

~600

4,3

6

72

1,28

28 CO, 59 N, 12 CO2

-170

3,20

1,88

~600

0,75

~30

~75

-

46 CH4, 54 CO2

-

27,23)

3,22

-

-

-

-

Hydrogène H2
Monoxyde de carbone CO
Méthane CH4

0,090

100 H

-253

120,0

2,97 (33 MJ/kg)

560

34

4

77 (air)
94 (oxygène)

1,25

100 CO

-191

10,05

3,48

605

2,5

12,5

75

0,72

75C, 25 H

-162

50,0

3,22

650

17,2

5

15

Acétylène C2H2
Ethane C2H6
Ethène C2H4

1,17

93 C, 7H

-81

48,1

4,38

305

13,25

1,5

80

1,36

80 C, 20 H

-88

47,5

-

515

17,3

3

14

1,26

86 C, 14 H

102

14,1

-

425

14,7

2,75

34

Propane C3H8
Propène C3H6
Butane C4H10
Butène C4H8
Diméthyl-éther C2H6O

2,02)

82 C, 18 H

-43

46,3

3,35

470

15,6

1,9

9,5

1,92

86 C, 14 H

-47

45,8

-

450

14,7

2

11

2,72)

83 C, 17 H

-10;+14)

45,6

3,39

365

15,4

1,5

8,5

2,5

86 C, 14 H

-5;+14)

45,2

-

-

14,8

1,7

9

2,055)

52 C, 13 H, 35 O

-25

28,8

3,43

235

9,0

3,4

18,6

1) Valeurs /m3 = valeurs /kg x masse volumique en kg/m3.
2) Masse volumique du gaz liquéfié 0,54 kg/l, masse volumique du propane liquide 0,51 kg/l, masse volumique du butane liquide 0,58 kg/l.
3) Le gaz de curage épuré contient 95 % de CH4 (méthane), son pouvoir calorifique est de 37,7 MJ/kg.
4) La première valeur concerne l'isobutane, la deuxième le butane ou le butene.
5) Masse volumique du diméthyléther liquéfié.

- D -

 



- E -

 

Les éléments :

Traduction du tableau de www.eskimo.com.

Abréviations utilisées :
1/ Dans les entêtes de colonne : Z est le numéro atomique (nombre d'e-), A la masse atomique (en uma)
2/ Pour les colonnes :
Groupe :

Structure cristalline :

Nom

Symb

Z

Group

Struc-
ture
Crist-
alline

A

Shells

Orbitals

Valence

Point d'ébullition

Boiling Point

Electro-
Negativité

Rayon
de
covalence
Å

Rayon ionique
Å

Rayon
Atomic
Å

Volume
Atomic

First Ionization Potential

Second Ionization Potential

Third Ionization Potential

Etats d'
Oxydation

Density
@ 293 K
g/cm³

Specific Heat
J/(g.K)

Heat of Vapori-
zation

kJ/mol

Heat of Fusion
kJ/mol

Electrical Conduc-
tivity en
106/
(cm.ohm)

Thermal Condu-
ctivity
W/cmK

Module d'Elas-
ticité
10³ MPa

Coeficient of Thermal Expansion
10-6.K-1

Lattice parm
Å

Lattice
parm
Å

Lattice
parm
Å

Name Origin

Description

Discovered By

Year

Location

Sources.

Uses

Hydrogène

H

1

N-M

H

1.00794

1

1s1

1

-255.34°C

-252.87°C

2.2

0.32

1.54 (+1)

0.79

14.4 cm³/mol

13.5984 V

--

--

±1

0.00008988

14.304

0.44936

0.05868

--

0.001815

--

--

--

 

 

Grec: hydro (eau) and genes (générer)

Tasteless, colorless, odorless gas. The most abundant element in the universe. Tenth most abundant element in the earth's crust.

Henry Cavendish

1766

England

Commercial quantities are produced by reacting superheated steam with methane or carbon. In lab work from reaction of metals with acid solutions or electrolysis.

Surtout utilisé dans la production d'ammoniac. Also used in balloons and in metal refining. Also used as fuel in rockets. Its two heavier isotopes are: deuterium (D) and tritium (T) used respectively for nuclear fission and fusion.

Helium

He

2

GN

H

4.002602

2

1s2

0

-272.2°C @ 26 atm.

-268.934°C

0

0.93

--

0.49

19.5 cm³/mol

24.5874 V

54.416 V

--

0

0.0001787

5.193

0.0845

--

--

0.00152

--

--

--

 

 

Greek: hêlios (sun).

Light, odorless, colorless, tasteless inert gas. Second most abundant element in the universe. Sixth most abundant in the earth's atmosphere.

Sir William Ramsey, Nils Langet, P.T.Cleve

1895

Scotland/Sweden

Found in natural gas deposits & in the air (5 parts per billion) Constantly lost to space; replenished by radioactive decay (alpha particles).

Used in balloons, deep sea diving & welding. Also used in very low temperature research.

Lithium

Li

3

MA

CBC

6.941

2,1

[He] 2s1

1

180.54°C

1342°C

0.98

1.23

.76 (+1)

2.05

13.10 cm³/mol

5.3917 V

76.638 V

122.451 V

1

0.53

3.6

145.920

3.00

0.108

0.847

10

46

3.5101

 

 

Greek: lithos (stone).

Soft silvery-white metal. Lightest of metals. Accounts for only 0.0007% of the earth's crust.

Johann Arfwedson

1817

Sweden

Obtained by passing electric charge through melted lithium chloride and from the silicate mineral called spodumene [LiAl(Si2O6)].

Used in batteries. Also for certain kinds of glass and ceramics. Some is used in lubricants.

Beryllium

Be

4

MTA

H

9.012182

2,2

[He] 2s2

2

1287°C

2472°C

1.57

0.90

.45 (+2)

1.40

5.0 cm³/mol

9.3226 V

18.211 V

153.893 V

2

1.848

1.82

292.40

12.20

0.313

2.00

301

11.3

2.286

 

3.584

Greek: beryllos, "beryl" (a mineral).

Hard, brittle, steel-gray metal. Lightest rigid metal. Formerly called glucinium (Gl) for its sweet but deadly taste.

Fredrich Wöhler, A.A.Bussy

1798

Germany/France

surtout dans les minéraux comme le beryl [AlBe3(Si6O18)] et chrysoberyl (Al2BeO4). Beryllium pur obtenu par réduction chimique du beryl, et par electrolyse du chloride de beryllium.

Its ability to absorb large amounts of heat makes it useful in spacecraft, missiles, aircraft, etc. Emeralds are beryl crystals with chromium traces giving them their green color.

Bore

B

5

N-M

R

10.811

2,3

[He] 2s2 2p1

3

2079°C

4000°C

2.04

0.82

.23 (+3)

1.17

4.6 cm³/mol

8.2980 V

25.154 V

37.93 V

3

2.34

1.02

489.70

50.20

1.0e-12

0.270

441

4.7

8.80

 

5.05

From Arabic and Persian words for borax.

Hard, brittle, lustrous black semimetal. Exists in the earth's crust at an average proportion of about 10 parts per million.

Sir H. Davy, J.L. Gay-Lussac, L.J. Thénard

1808

England/France

Obtained from kernite, a kind of borax (Na2B4O7.10H2O). High purity boron is produced by electrolysis of molten potassium fluroborate and potassium chloride (KCl).

Used with titanium & tungsten to make heat resistant alloys for jets & rockets.

Carbone

C

6

N-M

H

12.011

2,4

[He] 2s2 2p2

2,3,4

3825°C
(Sublimation)

4827°C

2.55

0.77

.16 (+4)

0.91

4.58 cm³/mol

11.2603 V

24.383 V

47.887 V

(±4),2

2.62

0.71

355.80

--

0.00061

1.29

7

1.0

2.4619

 

6.7080

Latin: carbo, (charcoal).

Allotropic forms include diamonds and graphite. Sixth most abundant element in the universe.

Known to the ancients

??

??

Made by burning organic compounds with insufficient oxygen.

For making steel, in filters, and many more uses. Radiocarbon dating uses the carbon-14 isotope to date old objects.

Azote

N

7

N-M

H

14.00674

2,5

[He] 2s2 2p3

3,5

-209.86°C

-195.8°C

3.04

0.75

1.71 (-3)

0.75

17.3 cm³/mol

14.5341 V

29.601 V

47.448 V

(±3),5,4,
±2,±1

0.0012506

1.04

2.7928

0.3604

--

0.0002598

--

240

--

 

 

Greek: nitron and genes, (soda forming).

Colorless, odorless, tasteless, generally inert gas. Fifth most abundant element in the universe. Makes up about 78% of earth's atmosphere.

Daniel Rutherford

1772

Scotland

Obtained from liquid air by fractional distillation.

Primarily to produce ammonia and other fertilizers. Also used in making nitric acid, which is used in explosives. Also used in welding and enhanced oil recovery.

Oxygène

O

8

N-M

C

15.9994

2,6

[He] 2s2 2p4

2

-218.4°C

-182.962°C

3.44

0.73

1.40 (-2)

0.65

14.0 cm³/mol

13.6181 V

35.117 V

54.934 V

-2

0.001429

0.92

3.4099

0.22259

--

0.0002674

--

780

--

 

 

Greek: oxys and genes, (acid former).

Colorless, odorless, tasteless gas; pale blue liquid. Third most abundant element in the universe. It is the most abundant element in the earth's crust, and makes up almost 21% of the atmosphere.

Joseph Priestly, Carl Wilhelm Scheele

1774

England/Sweden

Obtained primarily from liquid air by fractional distillation. Small amounts are made in the laboratory by electrolysis of water or heating potassium chlorate (KClO3) with manganese dioxide (MnO2) catalyst.

Used in steel making, welding, and supporting life. Naturally occuring ozone (O3) in the upper atmosphere shields the earth from ultraviolet radiation.

Fluor

F

9

H

C

18.9984032

2,7

[He] 2s2 2p5

1

-219.62°C

-188.14°C

3.98

0.72

1.33 (-1)

0.57

12.6 cm³/mol

17.4228 V

34.97 V

62.707 V

-1

0.001696

0.82

3.2698

0.2552

--

0.000279

--

1800

--

 

 

Latin: fluere (flow).

Greenish-yellow, pungent, corrosive gas. Extremely reactive. Does not occur uncombined in nature.

Henri Moissan

1886

France

Found in the minerals fluorite (CaF2) and cryolite(Na3AlF6). Electrolysis of hydrofluoric acid (HF) or potassium acid fluoride (KHF2) is the only practical method of commercial production.

Used in refrigerants and other fluorocarbons. Also in toothpaste as sodium fluoride (NaF) and stannous fluoride (SnF2); also in Teflon.

Néon

Ne

10

GN

CFC

20.1797

2,8

[He] 2s2 2p6

0

-248.67°C

-246.048°C

0

0.71

--

0.51

17.3 cm³/mol

21.5645 V

40.962 V

63.45 V

0

0.0008999

0.904

1.7326

0.3317

--

0.000493

--

1900

--

 

 

Greek: neos (new).

Colorless, odorless, tasteless inert gas. Fourth most abundant element in the universe and fifth most abundant in the earth's atmosphere (18.18 ppm).

Sir William Ramsey, M.W. Travers

1898

England

Obtained from production of liquid air as a byproduct of producing liquid oxygen and nitrogen.

Primarily for lighting.

Sodium

Na

11

MA

CBC

22.989768

2,8,1

[Ne] 3s1

1

97.81°C

882.9°C

0.93

1.54

1.02 (+1)

2.23

23.7 cm³/mol

5.1391 V

47.286 V

71.641 V

1

0.971

1.23

96.960

2.598

0.210

1.41

5

71

4.2908

 

 

Medieval Latin: sodanum, (headache remedy); symbol from Latin natrium, (sodium carbonate).

Soft silvery-white metal. Sixth most abundant element in the earth's crust. Burns in air with a brilliant white flame.

Sir Humphrey Davy

1807

England

Obtained by electrolysis of melted sodium chloride (salt), borax and cryolite.

There are few uses for the pure metal, however its compounds are used in medicine, agriculture and photography. Sodium chloride (NaCl) is table salt. Liquid sodium is sometimes used to cool nuclear reactors.

Magnesium

Mg

12

MTA

H

24.305

2,8,2

[Ne] 3s2

2

648.8°C

1090°C

1.31

1.36

.72 (+2)

1.72

13.97 cm³/mol

7.6462 V

15.035 V

80.143 V

2

1.738

1.02

127.40

8.954

0.226

1.56

44.4

24.8

3.2095

 

5.2107

From Magnesia ancient city in district of Thessaly, Greece.

Lightweight, malleable, silvery-white metal. Eighth most abundant element in the universe. Seventh most abundant element in the earth's crust.

Sir Humphrey Davy

1808

England

Usually obtained by electrolysis of melted magnesium chloride (MgCl2) found in sea water. Each cubic mile of seawater contains about 12 billion pounds of magnesium.

Used in alloys to make airplanes, missiles and other uses for light metals. Has structural properties similar to aluminium. But since it is flammable at temperatures of burning gasoline, its uses are limited.

Aluminum

Al

13

M

CFC

26.981539

2,8,3

[Ne] 3s2 3p1

3

660.37°C

2519°C

1.5

1.18

.54 (+3)

1.82

10.0 cm³/mol

5.9858 V

18.828 V

28.447 V

3

2.702

0.90

293.40

10.790

0.377

2.37

70.5

23.1

4.0497

 

 

Latin: alumen, aluminis, (alum).

Soft, lightweight, silvery-white metal. Third most abundant element in the earth's crust.

Hans Christian Oersted

1825

Denmark

Never occurs in free form. Obtained by electrolysis from bauxite (Al2O3).

Used for many purposes from airplanes to beverage cans. Too soft in its pure form so less than 1% of silicon or iron is added, which hardens and strengthens it.

Silicium

Si

14

N-M

CFC

28.0855

2,8,4

[Ne] 3s2 3p2

4

1410°C

3265°C

1.8

1.11

.26 (+4)

1.46

12.1 cm³/mol

8.1517 V

16.345 V

33.492 V

2,(4),-4

2.33

0.71

384.220

50.550

2.52e-12

1.48

162

2.6

5.4309

 

 

Latin: silex, silicus, (flint).

Amorphous form is brown power; crystalline form has gray metallic appearance. Seventh most abundant element in the universe. Second most plentiful element in the earths crust.

Jöns Berzelius

1824

Sweden

Makes up major portion of clay, granite, quartz (SiO2), and sand. Commercial production depends on a reaction between sand (SiO2) and carbon at a temperature of around 2200 °C.

Used in glass as silicon dioxide (SiO2). Silicon carbide (SiC) is one of the hardest substances known and used in polishing. Also the crystalline form is used in semiconductors.

Phosphore

P

15

N-M

M

30.973762

2,8,5

[Ne] 3s2 3p3

3,5

44.1°C

277°C

2.19

1.06

.17 (+5)

1.23

17.0 cm³/mol

10.4867 V

19.725 V

30.18 V

±3,(5),7

1.82

0.77

12.129

0.657

1.0e-17

0.00235

5

127

3.3137

10.478

4.3765

Greek: phosphoros, (bringer of light).

Soft white waxy phosphorescent solid, brownish-red powder or black solid.

Hennig Brand

1669

Germany

Found most often in phosphate rock. Pure phosphorus is obtained by heating a mixture of phosphate rock, coke, and silica to about 1450 °C.

Used in the production of fertilizers and detergents. Some is used in fireworks, safety matches, and incendiary weapons. Also some applications for it and some of its compounds which glow in the dark.

Soufre

S

16

N-M

O

32.066

2,8,6

[Ne] 3s2 3p4

2,4,6

115.21°C

444.6°C

2.58

1.02

.29 (+6)

1.09

15.5 cm³/mol

10.3600 V

23.33 V

34.83 V

±2,4,(6)

2.07

0.71

--

1.7175

0.5e-23

0.00269

19

70

10.4650

12.8665

24.4869

Latin: sulphur (brimstone).

Tasteless, odorless, pale yellow, brittle solid. Tenth most abundant element in the universe.

Known to the ancients.

??

??

Found in pure form and in ores like cinnabar, galena, sphalerite and stibnite. Pure form is obtained from undergound deposits by the Frasch process.

Used in matches, gunpowder, medicines, rubber and pesticides, dyes and insecticides. Also for making sulfuric acid (H2SO4).

Chlore

Cl

17

H

O

35.4527

2,8,7

[Ne] 3s2 3p5

1,3,5,7

-100.98°C

-34.6°C

3.16

0.99

1.81 (-1)

0.97

16.9 cm³/mol

12.9676 V

23.81 V

39.611 V

(±1),3,
5,7

0.003214

0.48

10.20

3.203

--

0.000089

--

--

--

 

 

Greek: chlôros (greenish yellow).

Greenish-yellow, disagreeable gas. Never found in free form in nature.

Carl Wilhelm Scheele

1774

Sweden

Salt (sodium chloride, NaCl) is its most common compound. Commercial quantities are produced by electrolysis of aqueous sodium chloride (seawater or brine from salt mines).

Used in water purification, bleaches, acids and many, many other compounds such as chlorofluorocarbons (CFC).

Argon

Ar

18

GN

CFC

39.948

2,8,8

[Ne] 3s2 3p6

0

-189.2°C

-185.7°C

0

0.98

--

0.88

23.9 cm³/mol

15.7596 V

27.629 V

40.74 V

0

0.0017824

0.520

6.447

1.188

--

0.0001772

3

618

--

 

 

Greek: argos (inactive).

Colorless, odorless, tasteless GN. It is the third most abundant element in the earth's atmosphere and makes up about 1%.

Sir William Ramsey, Baron Rayleigh

1894

Scotland

Continuously released into the air by decay of radioactive potassium-40. Pure form is obtained from fractional distillation of liquid air.

Used in lighting products. It is often used in filling incandescent light bulbs. Some is mixed with krypton in fluorescent lamps. Crystals in the semiconductor industry are grown in argon atmospheres.

Potassium

K

19

MA

CBC

39.0983

2,8,8,1

[Ar] 4s1

1

63.25°C

759.9°C

0.82

2.03

1.51 (+1)

2.77

45.46 cm³/mol

4.3407 V

31.625 V

45.72 V

1

0.862

0.75

79.870

2.334

0.139

1.024

2.4

82

5.247

 

 

English: pot ash; symbol from Latin: kalium, (alkali).

Soft, waxy, silver-white metal. Eighth most abundant element in the earth's crust (20,900 ppm). Occurs only in compounds.

Sir Humphrey Davy

1807

England

Found in minerals like carnallite [(KMgCl3).6H2O] & sylvite (potassium chloride, KCL). Pure metal is produced by the reaction of hot potassium chloride and sodium vapors in a special retort.

Used as potash in making glass & soap. Also as saltpeter, potassium nitrate (KNO3) to make explosives and to color fireworks in mauve. Formerly called kalium (K). Vital to function of nerve and muscle tissures.

Calcium

Ca

20

MTA

CFC

40.078

2,8,8,2

[Ar] 4s2

2

839°C

1484°C

1

1.74

1.00 (+2)

2.23

25.9 cm³/mol

6.1132 V

11.871 V

50.908 V

2

1.55

0.63

153.60

8.540

0.298

2.00

21

22.3

5.5886

 

 

Latin: calx, calcis (lime).

Fairly hard, silvery-white metal. Fifth most abundant element in the earth's crust (41,500 ppm). Occurs only in compounds.

Sir Humphrey Davy

1808

England

Obtained from minerals like chalk, limestone & marble. Pure metal is produced by replacing the calcium in lime (calcium carbonate, CaCO3) with aluminium in hot, low pressure retorts.

Used by many forms of life to make shells and bones. Virtually no use for the pure metal, however two of its compounds are, lime (CaO) and gypsum (CaSO4), are in great demand by a number of industries.

Scandium

Sc

21

MT

H

44.95591

2,8,9,2

[Ar] 3d1 4s2

3

1541°C

2830°C

1.36

1.44

.75 (+3)

2.09

15.0 cm³/mol

6.5614 V

12.80 V

24.76 V

3

3.0

0.6

314.20

14.10

0.0177

0.158

80

10.0

3.3091

 

5.2735

Latin: Scandia, Scandinavia.

Fairly soft, silvery-white metal. Eighth most abundant 'TR' found in the earth's crust (5.0 ppm).

Lars Nilson

1879

Sweden

Occurs mainly in the minerals thortveitile (~34% scandium) and wiikite. Also in some tin and tungsten ores. Pure scandium is obtained as a by-product of uranium refining.

Scandium metal is used in some aerospace applications. Scandum oxide (Sc2O3) is used in the manufacture of high-intensity electric lamps. Scandium iodide (ScI3) is used in lamps that produce light having a color closely matching natural sunlight.

Titane

Ti

22

MT

H

47.88

2,8,10,2

[Ar] 3d2 4s2

2,3,4

1668°C ±10°C

3287°C

1.54

1.32

.61 (+4)

2.00

10.64 cm³/mol

6.8282 V

13.58 V

27.491 V

(4),3,2

4.50

0.52

421.00

15.450

0.0234

0.219

110

8.6

29512

 

4.6845

Greek: titanos (Titans).

Shiny, dark-gray metal. Ninth most abundant element in the earth's crust (5700 ppm). It can be highly polished, and is relatively immune to tarnishing.

William Gregor

1791

England

Usually occurs in the minerals ilmenite (FeTiO3) or rutile (TiO2). Also in Titaniferous magnetite, titanite (CaTiSiO5), and iron ores. Pure metal produced by heating TiO2 with C and Cl2 to produce TiCl4 then heated with Mg gas in Ar atmosphere.

Since it is strong and resists acids it is used in many alloys. Titanium dioxide (TiO2), a white pigment that covers surfaces very well, is used in paint, rubber, paper and many others.

Vanadium

V

23

MT

CBC

50.9415

2,8,11,2

[Ar] 3d3 4s2

2,3,4,5

1890°C ±10°C

3407°C

1.63

1.22

.54 (+5)

1.92

8.78 cm³/mol

6.7463 V

14.65 V

29.31 V

(5),4,3,2

5.8

0.49

0.452

20.90

0.0489

0.307

129

8.4

3.0232

 

 

From Scandinavian goddess, Vanadis.

Soft, ductile, silvery-white metal. Resistant to corrosion by moisture, air and most acids and alkalis at room temperature.

Nils Sefström

1830

Sweden

Found in the minerals patronite (VS4), vanadinite [Pb5(VO4)3Cl], and carnotite [K2(UO2)2(VO4)2.3H2O]. Pure metal produced by heating with C and Cl to produce VCl3 which is heated with Mg in Ar atmosphere.

It is mixed with other metals to make very strong and durable alloys. Vanadium pentoxide (V2O5) is used as a catalyst, dye and color-fixer.

Chromium

Cr

24

MT

CBC

51.9961

2,8,13,1

[Ar] 3d5 4s1

2,3,6

1857°C

2672°C

1.66

1.18

.62 (+3)

1.85

7.23 cm³/mol

6.7666 V

16.50 V

30.96 V

6,(3),2

7.19

0.45

344.30

16.90

0.0774

0.937

259

4.9

2.8847

 

 

Greek: chrôma (color).

Very hard, crystalline, steel-gray metal. The pure metal has a blue-white color. It is hard, brittle and corrsion-resistant at normal temperatures.

Louis Vauquelin

1797

France

Chromite [Fe,Mg(CrO4)] is its most important mineral. Produced commercially by heating its ore in the presence of silicon or aluminium.

Used to make stainless steel. It gives the color to rubies and emeralds. Iron-nickel-chromium alloys in various percentages yield an incredible variety of the most important metals in modern technology.

Manganèse

Mn

25

MT

CBC

54.93805

2,8,13,2

[Ar] 3d5 4s2

1,2,3,4,
6,7

1244°C

2061°C

1.55

1.17

.67 (+2)

1.79

7.39 cm³/mol

7.4340 V

15.64 V

33.667 V

7,6,4,
(2),3

7.43

0.48

226.0

12.050

0.00695

0.0782

198

21.7

8.9142

 

 

Latin: magnes (magnet); Italian: manganese.

Hard, brittle, gray-white metal with a pinkish tinge. Rusts like iron in moist air.

Johann Gahn

1774

Sweden

Most abundant ores are pyrolusite (MnO2), psilomelane [(Ba,H2O)2Mn5O10] and rhodochrosite (MnCO3). Pure metal produced by mixing MnO2 with powered Al and ignited in a furnace.

Used in steel, batteries and ceramics. The steel in railroad tracks can contain as much as 1.2% manganese. It is crucial to the effectiveness of vitamin B1.

Fer

Fe

26

MT

CBC

55.847

2,8,14,2

[Ar] 3d6 4s2

2,3,4,6

1535°C

2861°C

1.83

1.17

.55 (+3)

1.72

7.1 cm³/mol

7.9024 V

16.18 V

30.651 V

2,(3)

7.86

0.44

349.60

13.80

0.0993

0.802

211

11.8

2.8665

 

 

Anglo-Saxon: iron; symbol from Latin: ferrum (iron).

Malleable, ductile, silvery-white metal. Fourth most abundant element in the earth's crust (56,300 ppm). Ninth most abundant element in the universe.

Known to the ancients.

??

??

Obtained from iron ores. Pure metal produced in blast furnaces by layering limestone, coke and iron ore and forcing hot gasses into the bottom. This heats the coke red hot and the iron is reduced from its oxides and liquified where it flows to the bottom

Used in steel and other alloys. Essential for humans. It is the chief constituent of hemoglobin which carries oxygen in blood vessels. Its oxides are used in magnetic tapes and disks.

Cobalt

Co

27

MT

H

58.9332

2,8,15,2

[Ar] 3d7 4s2

2,3

1495°C

2927°C

1.88

1.16

.65 (+2)

1.67

6.7 cm³/mol

7.8810 V

17.06 V

33.50 V

(2),3

8.90

0.42

376.50

16.190

0.172

1.00

208

13

2.507

 

4.070

German: kobold (goblin).

Hard, ductile, lustrous bluish-gray metal. Exists in the earth's curst in cocentrations of about 25 ppm. It has remarkable magnetic properties.

George Brandt

1739

Sweden

Occurs in compounds with arsenic, oxygen and sulfur as in cobaltine (CoAsS) and linneite (Co3S4). Pure cobalt is obtained as a byproduct of refining nickel, copper and iron.

Used in many hard alloys; for magnets, ceramics and special glasses. Remains hard up to 982°C. Radioactive cobalt-60 is used in cancer therapy.

Nickel

Ni

28

MT

CFC

58.6934

2,8,16,2

[Ar] 3d8 4s2

0,1,2,3

1453°C

2913°C

1.91

1.15

.69 (+2)

1.62

6.59 cm³/mol

7.6398 V

18.168 V

35.17 V

(2),3

8.90

0.44

370.40

17.470

0.143

0.907

208

13.4

3.5239

 

 

German: kupfernickel (false copper).

Hard, malleable, silvery-white metal. Found in the earth's crust in portions averaging 70 ppm. It can be polished to a lustrous finish. Virtually no corrosion under normal conditions.

Axel Cronstedt

1751

Sweden

Chiefly found in pentlandite [(Ni,Fe)9S8] ore. The metal is produced by heating the ore in a blast furnace which replaces the sulfur with oxygen. The oxides are then treated with an acid that reacts with the iron not the nickel.

Used in electroplating and metal alloys because of its resistance to corrosion. Also in nickel-cadmium batteries; as a catalyst and for coins.

Cuivre

Cu

29

MT

CFC

63.546

2,8,18,1

[Ar] 3d10 4s1

1,2

1083°C

2567°C

1.9

1.17

.73 (+2)

1.57

7.1 cm³/mol

7.7264 V

20.292 V

36.83 V

(2),1

8.96

0.38

300.30

13.050

0.596

4.01

124

16.5

3.6148

 

 

Symbol from Latin: cuprum (island of Cyprus famed for its copper mines).

Malleable, ductile, reddish-brown metal.

Known to the ancients.

??

??

Pure copper occurs rarely in nature. Usually found in sulfides as in chalcopyrite (CuFeS2), coveline (CuS), chalcosine (Cu2S) or oxides like cuprite (Cu2O).

Most often used as an electrical conductor. Also used in the manufacture of water pipes. Its alloys are used in jewelry and for coins.

Zinc

Zn

30

M

H

65.39

2,8,18,2

[Ar] 3d10 4s2

2

419.58°C

907°C

1.65

1.25

.74 (+2)

1.53

9.2 cm³/mol

9.3941 V

17.964 V

39.722 V

2

7.14

0.39

115.30

7.322

0.166

1.16

95

30.2

2.6650

 

4.9470

German: zink (German for tin).

Bluish-silver, ductile metal.

Known to the ancients.

??

Germany

Found in the minerals zinc blende (sphalerite) (ZnS), calamine, franklinite, smithsonite (ZnCO3), willemite, and zincite (ZnO).

Used to coat other metal (galvanizing) to protect them from rusting. Also used in alloys such as brass, bronze, nickel. Also in solder, cosmetics and pigments.

Gallium

Ga

31

M

O

69.723

2,8,18,3

[Ar] 3d10 4s2 4p1

2,3

29.78°C

2204°C

1.81

1.26

.62 (+3)

1.81

11.8 cm³/mol

5.9993 V

20.51 V

30.71 V

3

5.907

0.37

258.70

5.590

0.0678

0.406

11

19.7

4.523

7.661

4.524

Latin: Gallia (France).

Soft, blue-white metal.

Paul Émile Lecoq de Boisbaudran

1875

France

Found throughout the crust in minerals like bauxite, germanite and coal.

Used in semiconductor production. It us used in making LEDs (light-emitting diodes) and GaAs laser diodes.

Germanium

Ge

32

M

CFC

72.61

2,8,18,4

[Ar] 3d10 4s2 4p2

2,4

937.4°C

2830°C

2.01

1.22

.53 (+4)

1.52

13.6 cm³/mol

7.900 V

15.934 V

34.22 V

(4),2

5.323

0.32

330.90

36.940

1.45e-8

0.599

115

5.7

5.677

 

 

Latin: Germania (Germany).

Grayish-white metal.

Clemens Winkler

1886

Germany

Obtained from refining copper, zinc and lead.

Widely used in semiconductors. It is a good semiconductor when combined with tiny amounts of phosphorus, arsenic, gallium, and antimony.

Arsenic

As

33

N-M

R

74.92159

2,8,18,5

[Ar] 3d10 4s2 4p3

-3,0,3,5

817°C @ 28 atm.

613°C
Sublimation

2.18

1.20

.58 (+3)

1.33

13.1 cm³/mol

9.8152 V

18.633 V

28.351 V

(±3),5

5.72

0.33

34.760

--

0.0345

0.500

39

15.4

4.1319

 

a=54° 8'

Greek: arsenikon; Latin: arsenicum, (both names for yellow pigment).

Steel-gray, brittle semi-metal.

Known to the ancients.

??

??

Found in mispickel (arsenopyrite)

Many of its compounds are deadly poison and used as weed killer and rat poison. Conducts electricity. Used in semiconductors. Some compounds, called arsenides, are used in the manufacture of paints, wallpapers, and ceramics.

Selenium

Se

34

N-M

H

78.96

2,8,18,6

[Ar] 3d10 4s2 4p4

-2,4,6

217°C

684.9°C

2.55

1.16

.50 (+4)

1.22

16.45 cm³/mol

9.7524 V

21.19 V

30.82 V

-2,(4),6

4.79

0.32

37.70

6.694

1.0e-12

0.0204

20

45.0

4.3658

 

4.9592

Greek: selênê (moon).

Soft metalloid similar to sulfur. Ranges from gray metallic to red glassy appearance.

Jöns Berzelius

1818

Sweden

Obtained from lead, copper and nickel refining. Conducts electricity when struck by light.

Light causes it to conduct electricity more easily. It is used in photoelectric cells, TV cameras, xerography machines and as a semiconductor in solar batteries and rectifiers. Also colors glass red.

Brome

Br

35

H

O

79.904

2,8,18,7

[Ar] 3d10 4s2 4p5

1,3,5,7

-7.2°C

58.78°C

2.96

1.14

1.96 (-1)

1.12

25.6 cm³/mol

11.8138 V

21.8 V

36.0 V

(±1),5

3.119

0.473

15.438

5.286

--

0.00122

--

--

--

 

 

Greek: brômos (stench).

Redish-brown liquid.

Antoine J. Balard

1826

France

Occurs in compounds in sea water.

It was once used in large quantities to make a compound that removed lead compound build up in engines burning leaded gasoline. Now it is primarily used in dyes, disinfectants, and photographic chemicals.

Krypton

Kr

36

GN

CFC

83.8

2,8,18,8

[Ar] 3d10 4s2 4p6

0

-156.6°C

-152.3°C

0

1.12

--

1.03

38.9 cm³/mol

13.9996 V

24.359 V

36.95 V

0

0.003708

0.248

9.029

1.638

--

0.0000949

--

425

--

 

 

Greek: kryptos (hidden).

Colorless, odorless, tasteless rare GN.

Sir William Ramsey, M.W. Travers

1898

Great Britain

Forms 1 millionth of the atmosphere. Obtained from production of liquid air.

Used in lighting products. Some is used as inert filler-gas in incandescent bulbs. Some is mixed with argon in fluorescent lamps. The most important use is in flashing stroboscopic lamps that outline airport runways.

Rubidium

Rb

37

MA

CBC

85.4678

2,8,18,
8,1

[Kr] 5s1

1,2,3,4

38.89°C

686°C

0.82

2.16

1.61 (+1)

2.98

55.9 cm³/mol

4.1771 V

27.28 V

40.0 V

1

1.53

0.363

72.216

2.192

0.0779

0.582

2.0

91

5.70

 

 

Latin: rubidus (deep red); the color its salts impart to flames.

Soft, silvery-white, highly reactive metal.

R. Bunsen, G. Kirchoff

1861

Germany

Occurs abundantly, but so widespread that production is limited. Usually obtained from lithium production.

Used as a catalyst, photocells, and vacuum and cathode-ray tubes.

Strontium

Sr

38

MTA

CFC

87.62

2,8,18,
8,2

[Kr] 5s2

2

769°C

1384°C

0.95

1.91

1.26 (+2)

2.45

33.7 cm³/mol

5.6948 V

11.03 V

43.60 V

2

2.6

0.30

144.0

8.30

0.0762

0.353

15

22.5

6.0851

 

 

From the Scottish town, Strontian.

Soft, malleable, silvery-yellow metal.

A. Crawford

1790

Scotland

Found in minerals celestite and strontianite.

Used in flares and fireworks for crimson color. Strontium-90 is a long lived highly radioactive fallout product of atomic-bomb explosions.

Yttrium

Y

39

MT

H

88.90585

2,8,18,
9,2

[Kr] 4d1 5s2

3

1522°C ±8°C

3338°C

1.22

1.62

1.02 (+3)

2.27

19.8 cm³/mol

6.217 V

12.24 V

20.52 V

3

4.47

0.30

363.0

11.40

0.0166

0.172

64.4

11.3

3.6475

 

5.7308

From the Swedish village, Ytterby, where one of its minerals was first found.

Silvery, ductile, fairly reactive metal.

Johann Gadolin

1789

Finland

Found in minerals such as monazite, xenotime, and yttria.

Combined with europium to make red phosphors for color TV's. Yttrium oxide and iron oxide combine to form a crystal garnet used in radar.

Zirconium

Zr

40

MT

H

91.224

2,8,18,
10,2

[Kr] 4d2 5s2

2,3,4

1852°C ±2°C

4377°C

1.33

1.45

.84 (+4)

2.16

14.1 cm³/mol

6.6339 V

13.13 V

22.99 V

4

6.4

0.27

58.20

16.90

0.0236

0.227

94

5.7

3.2313

 

5.1479

From the mineral, zircon.

Gray-white, lustrous, corrosion-resistant metal.

Martin Klaproth

1789

Germany

Found in many minerals such as zircon and baddeleyite.

Used in alloys such as zircaloy which is used in nuclear applications since it does not readily absorb neutrons. Also baddeleyite is used in lab crucibles. Used in high-performance pumps and valves. Clear zircon (ZrSiO4) is a popular gemstone.

Niobium

Nb

41

MT

CBC

92.90638

2,8,18,
12,1

[Kr] 4d4 5s1

2,3,5

2468°C ±10°C

4742°C

1.6

1.34

.64 (+5)

2.08

10.87 cm³/mol

6.7589 V

14.32 V

25.04 V

(5),3

8.57

0.26

682.0

26.40

0.0693

0.537

104

7.3

3.3067

 

 

From Niobe; daughter of the mythical Greek king Tantalus.

Shiny white, soft, ductile metal.

Charles Hatchet

1801

England

Occurs in a mineral columbite. Formerly known as colombium (Cb). It is used in stainless steel alloys for nuclear reactors, jets and missiles.

Used as an alloy with iron and nickel. It can be used in nuclear reactors and is known to be superconductive when alloyed with tin, aluminum or zirconium.

Molybdene

Mo

42

MT

CBC

95.94

2,8,18,
13,1

[Kr] 4d5 5s1

2,3,6

2617°C

4612°C

2.16

1.30

.59 (+6)

2.01

9.4 cm³/mol

7.0924 V

16.461 V

27.16 V

(6),5,4,
3,2

10.2

0.25

598.0

32.0

0.187

1.38

322

4.8

3.1469

 

 

Greek: molybdos (lead).

Hard, silvery-white metal.

Carl Wilhelm Scheele

1778

Sweden

Found in the minerals molybdenite (MoS2) and wulfenite (MoO4Pb).

Its alloys are used in aircraft, missiles, and protective coatings in boiler plate.

Technetium

Tc

43

MT

H

-97.9072

2,8,18,
13,2

[Kr] 4d5 5s2

0,2,4,5,
6,7

2172°C

4877°C

1.9

1.27

--

1.95

8.5 cm³/mol

7.28 V

15.26 V

29.54 V

(7),6,4

11.5

0.21

660.0

24.0

0.067

0.506

380

8

2.735

 

4.388

Greek: technêtos (artificial).

Silvery-gray metal. First synthetically produced element.

Carlo Perrier, Émillo Segrè

1937

Italy

Made first by bombarding molybdenum with deuterons (heavy hydrogen) in a cyclotron.

Added to iron in quantities as low as 55 part-per-million transforms the iron into a corrosion-resistant alloy.

Ruthenium

Ru

44

MT

H

101.07

2,8,18,
15,1

[Kr] 4d7 5s1

0,1,2,3,4,
5,6,7,8

2334°C

4150°C

2.2

1.25

.62 (+4)

1.89

8.3 cm³/mol

7.3605 V

16.76 V

28.47 V

2,(3,4),
6,8

12.2

0.238

595.0

24.0

0.137

1.17

430

6.4

2.7059

 

4.2818

Latin: Ruthenia (Russia).

Rare, extremely brittle, silver-gray metal.

Karl Klaus

1844

Russia

Found in pentlandite and pyroxinite.

Used to harden platinum and palladium. Aircraft magnetos use platinum alloy with 10% ruthenium.

Rhodium

Rh

45

MT

CFC

102.9055

2,8,18,
16,1

[Kr] 4d8 5s1

2,3,4,5,6

1966°C ±3°C

3695°C

2.28

1.25

.67 (+3)

1.83

8.3 cm³/mol

7.4589 V

18.08 V

31.06 V

2,(3),4

12.4

0.242

493.0

21.50

0.211

1.50

330

8.2

3.8045

 

 

Greek: rhodon (rose). Its salts give a rosy solution.

Hard, silvery-white metal

William Wollaston

1803

England

Obtained as a by-product of nickel production.

Used as a coating to prevent wear on high quality science equipment and with platinum to make thermocouples.

Palladium

Pd

46

MT

CFC

106.42

2,8,18,
18

[Kr] 4d10

2,3,4

1552°C

2940°C

2.2

1.28

.64 (+2)

1.79

8.9 cm³/mol

8.3369 V

19.63 V

32.93 V

(2),4

12.02

0.24

357.0

17.60

0.0950

0.718

127

11.8

3.8908

 

 

Named after the asteroid, Pallas, discovered in 1803.

Soft, malleable, ductile, silvery-white metal.

William Wollaston

1803

England

Obtained with platinum, nickel, copper and mercury ores.

Used as a substitue for silver in dental items and jewelry. The pure metal is used as the delicate mainsprings in analog wristwatches. Also used in surgical instruments and as catalyst .

Argent

Ag

47

MT

CFC

107.8682

2,8,18,
18,1

[Kr] 4d10 5s1

1,2

961.93°C

2162°C

1.93

1.34

1.15 (+1)

1.75

10.3 cm³/mol

7.5762 V

21.49 V

34.83 V

1

10.5

0.235

250.580

11.30

0.630

4.29

80

18.9

4.0863

 

 

Anglo-Saxon: siolful, (silver); symbol from Latin: argentium.

Silvery-ductile, and malleable metal

Known to the ancients.

??

??

Found in ores called argentite (AgS), light ruby silver (Ag3AsS3), dark ruby silver(Ag3SbS3) and brittle silver.

Used in alloys for jewelry and in other compounds for photography. It is also a good conductor, but expensive.

Cadmium

Cd

48

M

H

112.411

2,8,18,
18,2

[Kr] 4d10 5s2

2

320.9°C

765°C

1.69

1.48

.95 (+2)

1.71

13.1 cm³/mol

8.9937 V

16.908 V

37.48 V

2

8.65

0.23

99.570

6.192

0.138

0.968

62

30.8

2.9789

 

5.6169

Greek: kadmeia (ancient name for calamine (zinc oxide)).

Soft, malleable, blue-white metal.

Fredrich Stromeyer

1817

Germany

Obtained as a by product of zinc refining.

Used in nickel-cadmium batteries. Also in electroplating steel and in the manufacture of berings. Its compounds are found in paint pigments and a wide variety of intense colors. Boiling cadmium gives off a weird, yellow-colored vapor that is poisonous.

Indium

In

49

M

T

114.818

2,8,18,
18,3

[Kr] 4d10 5s2 5p1

1,2,3

156.61°C

2080°C

1.78

1.44

.80 (+3)

2.00

15.7 cm³/mol

5.7864 V

18.869 V

28.03 V

3

7.31

0.23

231.50

3.263

0.116

0.816

14

32.1

4.5981

 

4.9469

Latin: indicum (color indigo), the color it shows in a spectroscope.

Rare, very soft, silver-white metal

Ferdinand Reich, T. Richter

1863

Germany

Found in certain zinc ores.

Used to coat high speed bearings and as an alloy that lowers the melting point of other metals. Relativly small amounts are used in dental items and in electronic semiconductors.

Etain

Sn

50

M

T

118.71

2,8,18,
18,4

[Kr] 4d10 5s2 5p2

2,4

231.97°C

2602°C

1.96

1.41

.71 (+4)

1.72

16.3 cm³/mol

7.3438 V

14.632 V

30.502 V

(4),2

7.30

0.227

295.80

7.029

0.0917

0.666

50

22.0

5.8317

 

 

Named after Etruscan god, Tinia; symbol from Latin: stannum (tin).

Silvery-white, soft, malleable and ductile metal.

Known to the ancients.

??

??

Principally found in the ore cassiterite(SnO2) and stannine (Cu2FeSnS4).

Used as a coating for steel cans since it is nontoxic and noncorrosive. Also in solder (33%Sn:67%Pb), bronze (20%Sn:80%Cu), and pewter. Stannous fluoride (SnF2), a compound of tin and fluorine is used in some toothpaste.

Antimoine

Sb

51

M

R

121.757

2,8,18,
18,5

[Kr] 4d10 5s2 5p3

0,-3,3,5

630.74°C

1587°C

2.05

1.40

.76 (+3)

1.53

18.23 cm³/mol

8.64 V

16.53 V

25.30 V

(±3),5

6.684

0.21

77.140

19.870

0.0288

0.243

67

11.0

4.5069

 

a=57° 6'27"

Greek: anti and monos (not alone); symbol from mineral stibnite.

Hard, brittle, silvery-white semimetal.

Known to the ancients.

??

??

Found in stibnite (Sb2S3) and in valentinite (Sb2O3).

It is alloyed with other metals to increase their hardness. Also in the manufacture of a few special types of semiconductor devices. Also in plastics and chemicals. A few kinds of over-the-counter cold and flu remedies use antimony compounds.

Tellurium

Te

52

N-M

H

127.6

2,8,18,
18,6

[Kr] 4d10 5s2 5p4

2,4,6

449.5°C

989.9°C

2.1

1.36

.97 (+4)

1.42

20.5 cm³/mol

9.0096 V

18.60 V

27.96 V

-2,(4),6

6.24

0.20

52.550

17.490

2.0e-6

0.0235

40

18.8

4.4568

 

5.9270

Latin: tellus (earth).

Silvery-white, brittle simi-metal.

Franz Müller von Reichenstein

1782

Romania

Obtained as a by-product of copper and lead refining.

Used to improve the machining quality of copper and stainless steel products and to color glass and ceramics. Also in thermoelectric devices. Some is used in the rubber industry and it is a basic ingredient in manufacturing blasting caps.

Iode

I

53

H

O

126.90447

2,8,18,
18,7

[Kr] 4d10 5s2 5p5

1,3,5,7

113.5°C

184.35°C à 35 bars

2.66

1.33

2.20 (-1)

1.32

25.74 cm³/mol

10.4513 V

19.131 V

33.0 V

(±1),5,7

4.93

0.214

20.752

7.824

8.0e-16

0.00449

--

87

4.79

7.25

9.78

Greek: iôeides (violet colored).

Shiny, black, Solide Non-Métal; as a gas it is violet and intensely irritating to the eyes, nose and throat.

Bernard Courtois

1811

France

Occurs on land and in the sea in sodium and potassium compounds.

Required in small amounts by humans. Once used as an antiseptic, but no longer due to its poisonous nature.

Xénon

Xe

54

GN

CFC

131.29

2,8,18,
18,8

[Kr] 4d10 5s2 5p6

0

-111.9°C

-107.1°C

0

1.31

--

1.24

37.3 cm³/mol

12.1299 V

21.21 V

32.10 V

0

0.00588

0.158

12.636

2.297

--

0.0000569

--

253

--

 

 

Greek: xenos (strange).

Heavy, colorless, odorless, GN.

Sir William Ramsay; M. W. Travers

1898

England

Obtain from the small quantities in liquid air.

Used for filling flash lamps and other powerful lamps. Electrical excitation of xenon produces a burst of brilliant whtie light. Also used in bubble chambers and modern nuclear power reactors.

Cesium

Cs

55

MA

CBC

132.90543

2,8,18,
18,8,1

[Xe] 6s1

1

28.4°C

669.3°C

0.79

2.35

1.74 (+1)

3.34

71.07 cm³/mol

3.8939 V

25.10 V

--

1

1.873

0.24

67.740

2.092

0.0489

0.359

1.8

100

6.0797

 

 

Latin: coesius (sky blue); for the blue lines of its spectrum.

Very soft, light gray, ductile metal.

Gustov Kirchoff, Robert Bunsen

1860

Germany

Found in pollucite [(Cs4Al4Si9O26).H2O] and as trace in lepidolite.

Used as a 'getter' to remove air traces in vacuum and cathode-ray tubes. Also used in producing photoelectric devices and atomic clocks. Since it ionizes readily, it is used as an ion rocket motor propellant.

Barium

Ba

56

MTA

CBC

137.327

2,8,18,
18,8,2

[Xe] 6s2

2

725°C

1897°C

0.89

1.98

1.42 (+2)

2.78

39.24 cm³/mol

5.2117 V

10.004 V

--

2

3.51

0.204

142.0

7.750

0.030

0.184

13

20.6

5.013

 

 

Greek: barys (heavy or dense).

Soft, slightly malleable, silvery-white metal.

Sir Humphrey Davy

1808

England

Found in barytine (BaSO4) and witherite (BaCO3), never found in pure form due to its reactivity. Must be stored under kerosene to remain pure.

Barite, or barium sulfate (BaSO4), when ground is used as a filter for rubber, plastics, and resins. It is insoluable in water and so is used in X-rays of the digestive system. Barium nitrate, Ba(NO3)2, burns brilliant green and is used in fireworks.

Lanthanum

La

57

MT

H

138.9055

2,8,18,
18,9,2

[Xe] 5d1 6s2

3

918°C

3464°C

1.1

1.69

1.16 (+3)

2.74

20.73 cm³/mol

5.5770 V

11.059 V

19.174 V

3

6.7

0.19

414.0

6.20

0.0126

0.135

50

5.2

3.770

 

12.159

Greek: lanthanein (to be hidden).

Soft, silvery-white, malleable, ductile metal.

Carl Mosander

1839

Sweden

Found with TRs in monazite and bastnasite. Monazite sand typicall contains 25% lanthanum.

It is used in the electodes of high-intensity, carbon-arc lights. Also used in the production of high-grade europium metal. Because it gives glass refractive properties, it is used in expensive camera lenses.

Cerium

Ce

58

TR

CFC

140.115

2,8,18,
20,8,2

[Xe] 4f1 5d1 6s2

3,4

798°C ±3°C

3433°C

1.12

1.65

1.14 (+3)

2.70

20.67 cm³/mol

5.5387 V

10.851 V

20.20 V

(3),4

6.78

0.19

414.0

5.460

0.0115

0.114

30

5.2

5.1603

 

 

Named after the asteroid, Ceres, discovered two years before the element.

Malleable, ductile, iron-gray metal.

W. von Hisinger, J. Berzelius, M. Klaproth

1803

Sweden/Germany

Most abundant TR metal. Found in many minerals like monazite sand [Ce(PO4)].

Its oxides are used in the optics and glass-making industries. Its salts are used in the photography and textile industry. Used in high-intensity carbon lamps and as alloying agents in special metals.

Praseodymium

Pr

59

TR

H

140.90765

2,8,18,
21,8,2

[Xe] 4f3 6s2

3

931°C

3520°C

1.13

1.65

1.13 (+3)

2.67

20.8 cm³/mol

5.464 V

10.551 V

21.62 V

(3,4)

6.77

0.19

296.80

6.890

0.0148

0.125

50

5.4

3.6726

 

11.8358

Greek: prasios and didymos (green twin); from its green salts.

Silvery white, moderately soft, malleable, ductile metal.

C.F. Aver von Welsbach

1885

Austria

Obtained from same salts as neodymium.

Used with neodymium to make lenses for glass maker's goggles since it filters out the yellow light present in glass blowing. Alloyed with magnesium creates a high-strength metal used in aircraft engines. Makes up 5% of Mich metal.

Neodymium

Nd

60

TR

H

144.24

2,8,18,
22,8,2

[Xe] 4f4 6s2

3

1021°C

3074°C

1.14

1.64

--

2.64

20.6 cm³/mol

5.5250 V

10.727 V

22.076 V

3

7.0

0.19

273.0

7.140

0.0157

0.165

38

6.9

3.6580

 

 

Greek: neos and didymos (new twin).

Silvery-white, rare-earth metal that oxidizes easily in air.

C.F. Aver von Welsbach

1925

Austria

Made from electrolysis of its halide salts, which are made from monazite sand.

Used in making artificial ruby for lasers. Also in ceramics and for a special lens with praseodymium. Also to produce bright purple glass and special glass that filters infrared radiation. Makes up 18% of Mich metal, which is used in making steel.

Promethium

Pm

61

TR

H

-144.9127

2,8,18,
23,8,2

[Xe] 4f5 6s2

3

1042 °C

3000 °C (estimé)

1.13

1.63

1.09 (+3)

2.62

22.39 cm³/mol

5.55 V

10.903 V

22.283 V

3

6.475

0.18

--

--

--

0.179

42

--

--

 

 

Named for the Greek god, Prometheus.

TR metal of synthetic origin on the earth, naturally made in stars.

J.A. Marinsky, L.E. Glendenin, C.D. Coryell

1945

United States

Does not occur naturally. Found among fission products of uranium, thorium, and plutonium.

It has been used as a source of radioactivity for thickness-measuring gages.

Samarium

Sm

62

TR

R

150.36

2,8,18,
24,8,2

[Xe] 4f6 6s2

2,3

1074°C

1794°C

1.17

1.62

1.08 (+3)

2.59

19.95 cm³/mol

5.6437 V

11.069 V

23.423 V

(3),2

7.54

0.20

166.40

8.630

0.00956

0.133

45

--

8.996

 

a=23° 13'

Named after the mineral samarskite.

Silvery TR metal.

Paul Émile Lecoq de Boisbaudran

1879

France

Found with other TRs in monazite sand. The sand is often 50% TRs by weight and 2.8% samarium.

It is used in the electronics and ceramics industries. It is easily magnetized and very difficult to demagnetize. This suggests important future applications in solid-state and superconductor technologies.

Europium

Eu

63

TR

CBC

151.965

2,8,18,
25,8,2

[Xe] 4f7 6s2

2,3

822°C

1527°C

1.2

1.85

1.07 (+3)

2.56

28.9 cm³/mol

5.6704 V

11.245 V

24.926 V

(3),2

5.259

0.18

143.50

9.210

0.0112

0.139

15

41

4.5822

 

 

Named for the continent of Europe.

Soft, silvery-white metal.

Eugène Demarçay

1901

France

Obtained from monazite sand, which is a mixture of phosphates of calcium, thorium, cerium, and most other TRs.

Used with yttrium oxide to make red phosphors for color televisions.

Gadolinium

Gd

64

TR

H

157.25

2,8,18,
25,9,2

[Xe] 4f7 5d1 6s2

3

1313°C

3273°C

1.2

1.61

1.05 (+3)

2.54

19.9 cm³/mol

6.1500 V

12.095 V

20.635 V

3

7.895

0.23

359.40

10.050

0.00736

0.106

55

-2

3.6361

 

5.7828

Named after the mineral gadolinite.

Soft, ductile, silvery-white metal.

Jean de Marignac

1880

Switzerland

Found with other TRs in gadolinite and monazite sand.

Used in steel alloying agents and the manufacture of electronic components.

Terbium

Tb

65

TR

H

158.92534

2,8,18,
27,8,2

[Xe] 4f9 6s2

3,4

1356°C

3230°C

1.2

1.59

1.18 (+3)

2.51

19.2 cm³/mol

5.8639 V

11.525 V

21.91 V

(3),4

8.27

0.18

330.90

10.80

0.00889

0.111

57

9.4

3.6011

 

5.6938

Named after Ytterby, a village in Sweden.

Soft, ductile, silvery-gray, TR metal.

Carl Mosander

1843

Sweden

Found with other TRs in monazite sand, which typically contain 0.03% terbium. Other sources are xenotime and euxenite, both of which are oxide mixtures that can contain up to 1% terbium.

It is used in modest amounts in special lasers and solid-state devices.

Dysprosium

Dy

66

TR

H

162.5

2,8,18,
28,8,2

[Xe] 4f10 6s2

3

1412°C

2567°C

1.22

1.59

1.03 (+3)

2.49

19.0 cm³/mol

5.9389 V

11.67 V

22.802 V

3

8.536

0.17

230.0

11.060

0.0108

0.107

63

9.6

3.5904

 

5.6477

Greek: dysprositos (hard to get at).

Soft, lustrous, silvery metal.

Paul Émile Lecoq de Boisbaudran

1886

France

Usually found with erbium, holmium and other TRs in some minerals such as monazite sand, which is often 50% TR by weight.

Its uses are limited to the experimental and esoteric.

Holmium

Ho

67

TR

H

164.93032

2,8,18,
29,8,2

[Xe] 4f11 6s2

3

1474°C

2700°C

1.23

1.58

--

2.47

18.7 cm³/mol

6.0216 V

11.805 V

22.843 V

3

8.80

0.16

241.0

12.20

0.0124

0.162

72

9.8

3.5774

 

5.6160

From Holmia, the Latinized name for Stockholm, Sweden.

Fairly soft, malleable, lustrous, silvery metal.

J.L. Soret

1878

Switzerland

Occurs in gadolinite. Most often from monazite which is often 50% TR and typically 0.05% holmium.

It has very few practical applications; however, it has some unusual magnetic properties that offer some hope for future applications.

Erbium

Er

68

TR

H

167.26

2,8,18,
30,8,2

[Xe] 4f12 6s2

3

1529°C

2868°C

1.24

1.57

1.00 (+3)

2.45

18.4 cm³/mol

6.1078 V

11.929 V

22.739 V

3

9.05

0.17

261.0

19.90

0.0117

0.143

73

9.4

3.5589

 

5.5876

Named after the Swedish town, Ytterby.

Soft, malleable, silvery metal.

Carl Mosander

1843

Sweden

Found with other heavier TRs in xenotime and euxerite.

Erbium oxide is used in ceramics to obtain a pink glaze. Also a few uses in the nuclear industry and as an alloying agent for other exotic metals. For example, it increases the malleability of vanadium.

Thulium

Tm

69

TR

H

168.93421

2,8,18,
31,8,2

[Xe] 4f13 6s2

3

1545°C

1950°C

1.25

1.56

1.09 (+3)

2.42

18.1 cm³/mol

6.1843 V

12.054 V

26.367 V

(3),2

9.33

0.16

191.0

16.840

0.0150

0.168

76

12

3.5346

 

5.5548

From Thule ancient name of Scandinavia.

Soft, malleable, ductile, silvery metal

Per Theodor Cleve

1879

Sweden

Found with other TRs in the minerals gadolinite, euxenite, xenotime, and monazite. Monazite is often 50% TR by weight and 0.007% thulium.

Radioactive thulium is used to power portable x-ray machines, eliminating the need for electrical equipment.

Ytterbium

Yb

70

TR

CFC

173.04

2,8,18,
32,8,2

[Xe] 4f14 6s2

2,3

819°C

1196°C

1.1

1.74

.99 (+3)

2.40

24.79 cm³/mol

6.2542 V

12.188 V

25.03 V

(3),2

6.98

0.15

128.90

7.660

0.0351

0.349

18

25.1

5.4864

 

 

Named for the Swedish village of Ytterby.

Silvery, lustrous, malleable, and ductile metal.

Jean de Marignac

1878

Switzerland

Found in minerals such as yttria, monazite, gadolinite, and xenotime. Monazite is often 50% TR by weight and typically 0.03% ytterbium.

Used in metallurgical and chemical experiments.

Lutetium

Lu

71

TR

H

174.967

2,8,18,
32,9,2

[Xe] 4f14 5d1 6s2

3

1663°C

3402°C

1.27

1.56

.98 (+3)

2.25

17.78 cm³/mol

5.4259 V

13.888 V

20.957 V

3

9.85

0.15

355.90

18.60

0.0185

0.164

84

8.2

3.5032

 

5.5511

Named for the ancient name of Paris, Lutecia.

Silvery-white, hard, dense, TR metal.

Georges Urbain

1907

France

Found with ytterbium in gadolinite and xenotime. Usually obtained from monazite sand which is ofter 50% TR by weight and 0.003% lutetium.

It has no practical applications.

Hafnium

Hf

72

MT

H

178.49

2,8,18,
32,10,
2

[Xe] 4f14 5d2 6s2

4

2227°C

4602°C

1.3

1.44

.83 (+4)

2.16

13.6 cm³/mol

6.8251 V

14.925 V

23.32 V

4

13.2

0.14

575.0

24.060

0.0312

0.230

139

5.9

3.1947

 

5.0513

From Hafnia, the Latin name of Copenhagen.

Silvery, ductile metal.

Dirk Coster, Georg von Hevesy

1923

Denmark

Obtained from mineral zircon or baddeleyite.

Used in reactor control rods because of its ability to absorb neutrons.

Tantalum

Ta

73

MT

CBC

180.9479

2,8,18,
32,11,
2

[Xe] 4f14 5d3 6s2

3,5

2996°C

5425°C ±100°C

1.5

1.34

.64 (+5)

2.09

10.90 cm³/mol

7.89 V

--

--

5

16.6

0.14

743.0

31.60

0.0761

0.575

183

6.3

3.298

 

 

From king Tantalus of Greek mythology, father of Niobe.

Rare, gray, heavy, hard but ductile, metal with a high melting point.

Anders Ekeberg

1802

Sweden

Chiefly occurs in the mineral tantalite. Always found with niobium.

Often used as an economical substitute for platinum. Tantalum pentoxide is used in capacitors and in camera lenses to increase refracting power. It and its alloys are corrosion and wear resistant so it is used to make surgical and dental tools.

Tungsten

W

74

MT

CBC

183.84

2,8,18,
32,12,
2

[Xe] 4f14 5d4 6s2

2,3,4,5,6

3410°C ±20°C

5660°C

2.36

1.30

.60 (+6)

2.02

9.53 cm³/mol

7.98 V

--

--

(6),5,4,
3,2

19.3

0.13

824.0

35.40

0.189

1.74

401

4.5

3.1653

 

 

Swedish: tung sten (heavy stone): symbol from its German name wolfram.

Hard, steel-gray to white metal. Highest melting point of all metals.

Fausto and Juan José de Elhuyar

1783

Spain

Occurs in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4].

Made into filaments for vacuum tubes and electric lights. Also as contact points in cars. Combined with calcium or magnesium it makes phosphors. Tungsten carbide is extremely hard and is used for making cutting tools and abrasives.

Rhenium

Re

75

MT

H

186.207

2,8,18,
32,13,
2

[Xe] 4f14 5d5 6s2

-1,1,2,3,
4,5,6,7

3180°C

5627°C (estimé)

1.9

1.28

.53 (+7)

1.97

8.85 cm³/mol

7.88 V

--

--

(7),6,4,
2,-1

21.0

0.13

715.0

33.20

0.0542

0.479

461

6.2

2.760

 

4.458

Latin: Rhenus, the Rhine River.

Rare and costly, dense, silvery-white metal.

Walter Noddack, Ida Tacke, Otto Berg

1925

Germany

Found in small amounts in gadolinite and molybdenite. Has a very high melting point.

Mixed with tungsten or platinum to make filaments for mass spectrographs. Its main value is as a trace alloying agent for hardening metal components that are subjected to continuous frictional forces.

Osmium

Os

76

MT

H

190.23

2,8,18,
32,14,
2

[Xe] 4f14 5d6 6s2

0,3,4,6,8

3054°C

5027°C

2.2

1.26

.63 (+4)

1.92

8.49 cm³/mol

8.7 V

--

--

2,3,(4),
6,8

22.40

0.13

746.0

31.80

0.109

0.876

550

5.1

2.7354

 

4.3193

Greek: osmê (odor).

Hard fine black powder or hard, lustrous, blue-white metal.

Smithson Tenant

1804

England

Obtained from the same ores as platinum.

Used to tip gold pen points, instrument pivots, to make electric light filaments. Used for high temp. alloys and pressure bearings. Very hard and resists corrosion better than any other.

Iridium

Ir

77

MT

CFC

192.22

2,8,18,
32,15,
2

[Xe] 4f14 5d7 6s2

3

2410°C

4130°C

2.2

1.27

.63 (+4)

1.87

8.54 cm³/mol

9.1 V

--

--

2,3,(4),6

22.42

0.130

604.0

26.10

0.197

1.47

533

6.4

3.8390

 

 

Latin: iris (rainbow).

Heavy, brittle, white metal.

S.Tenant, A.F.Fourcory, L.N.Vauquelin, H.V.Collet-Descoltils

1804

England/France

Found in gravel deposits with platinum.

Used with osmium to tip gold pen points, to make crucible and special containers. Also to make alloys used for standard weights and measures, and heat-resistant alloys. Also as hardening agent for platinum.

Platinum

Pt

78

MT

CFC

195.08

2,8,18,
32,17,
1

[Xe] 4f14 5d9 6s1

2,3,4

1772°C

3827°C

2.28

1.30

.63 (+4)

1.83

9.10 cm³/mol

9.0 V

18.563 V

--

2,(4)

21.45

0.13

510.0

19.60

0.0966

0.716

175

8.8

3.9240

 

 

Spanish: platina (little silver).

Rare, very heavy, soft, silvery-white metal.

Julius Scaliger

1735

Italy

Produced from deposits of native, or elemental, platinum.

Used in jewelry, to make crucible and special containers and as a catalyst. Used with cobalt to produce very strong magnets. Also to make standard weights and measures. Resists corrosion and acid attacks except aqua regia.

Or

Au

79

MT

CFC

196.96654

2,8,18,
32,18,
1

[Xe] 4f14 5d10 6s1

1,3

1064.43°C

2808°C

2.54

1.34

.85 (+3)

1.79

10.2 cm³/mol

9.2257 V

20.521 V

--

(3),1

19.32

0.128

334.40

12.550

0.452

3.17

78.3

14.2

4.0786

 

 

Anglo-Saxon: geolo (yellow); symbol from Latin: aurum (shining dawn).

Soft, malleable, bright yellow metal.

Known to the ancients.

??

??

Found in veins in the crust, with cooper ore and native .

Very malleable. Used in electronics, jewelry and coins. It is a good reflector of infrared radiation, so a thin film of gold is applied to the glass of skyscrapers to reduce internal heating from sunlight.

Mercure

Hg

80

M

R

200.59

2,8,18,
32,18,
2

[Xe] 4f14 5d10 6s2

1,2

-38.87°C

356.58°C

2

1.49

1.02 (+2)

1.76

14.82 cm³/mol

10.4375 V

18.759 V

34.202 V

(2),1

13.546

0.139

59.229

2.295

0.0104

0.0834

22

49

3.005

 

a=70° 32'

From the Roman god Mercury; symbol from Latin: hydrargyrus (liquid silver).

Heavy, silver-white metal, liquid at ordinary temperatures.

Known to the ancients.

??

??

Virtually all mercury comes from cinnabar or mercury sulfide (HgS). Some sources of red cinnabar are so rich in mercury that droplets of elemental mercury can be found in random samples.

Used in thermometers, barometers, and batteries. Also used in electrical switches and mercury-vapor lighting products.

Thallium

Tl

81

M

H

204.3833

2,8,18,
32,18,
3

[Xe] 4f14 5d10 6s2 6p1

1,3

303.5°C

1457°C ±10°C

2.04

1.48

1.59 (+1)

2.08

17.2 cm³/mol

6.1083 V

20.428 V

29.829 V

3,(1)

11.85

0.13

164.10

4.142

0.0617

0.461

12

29.9

3.4567

 

5.5250

Greek: thallos (green twig), for a bright green line in its spectrum.

Soft gray metal that looks like lead.

Sir William Crookes

1861

England

Found in iron pyrites. Also in crookesite, hutchinsonite and lorandite. Most is recovered from the byproducts of lead and zinc refining.

Its compounds are used in rat and ant poisons. Also for detecting infrared radiation.

Plomb

Pb

82

M

CFC

207.2

2,8,18,
32,18,
4

[Xe] 4f14 5d10 6s2 6p2

2,4

327.502°C

1740°C

2.33

1.47

1.19 (+2)

1.81

18.17 cm³/mol

7.4167 V

15.028 V

31.943 V

4,(2)

11.34

0.13

177.70

4.799

0.0481

0.353

20

28.8

4.9504

 

 

Anglo-Saxon: lead; symbol from Latin: plumbum.

Very soft, highly malleable and ductile, blue-white shiny metal.

Known to the ancients.

??

??

Found most often in ores called galena or lead sulfide (PbS). Some is found in its native state.

Used in solder, shielding against radiation and in batteries.

Bismuth

Bi

83

M

R

208.98037

2,8,18,
32,18,
5

[Xe] 4f14 5d10 6s2 6p3

3,5

271.3°C

1560°C ±5°C

2.02

1.46

1.03 (+3)

1.63

21.3 cm³/mol

7.289 V

16.687 V

25.559 V

(3),5

9.8

0.12

104.80

11.30

0.00867

0.0787

34

13.4

4.736

 

a=57° 14'

German: bisemutum, (white mass), Now spelled wismut.

Hard, brittle, steel-gray metal with a pink tint.

Known to the ancients.

??

??

It can be found free in nature and in minerals like bismuthine (Bi2O3) and in bismuth ochre (Bi2O3)

Main use is in pharmaceuticals and low melting point alloys used as fuses.

Polonium

Po

84

M

M

-208.9824

2,8,18,
32,18,
6

[Xe] 4f14 5d10 6s2 6p4

-2,0,2,4,6

254°C

962°C

2

1.46

--

1.53

22.23 cm³/mol

8.4167 V

--

--

(4),2

9.4

0.12

--

--

0.0219

0.20

26

23

3.345

 

 

Named for Poland, native country of Marie Curie.

Silvery-gray, extremely rare, radioactive metal.

Pierre and Marie Curie

1898

France

Occurs in pitchblende from decay of bismuth.

Used in industrial equipment that eliminates static electricity caused by such processes as rolling paper, wire, and sheet metal.

Astatine

At

85

H

??

-209.9871

2,8,18,
32,18,
7

[Xe] 4f14 5d10 6s2 6p5

1,3,5,7

302°C

337°C

2.2

1.45

--

1.43

--

9.5 V

--

--

(±1),3,
5,7

--

--

--

--

--

0.017

--

--

--

 

 

Greek: astatos (unstable).

Unstable, radioactive member du groupe Halogène.

D.R.Corson, K.R.MacKenzie, E.Segré

1940

United States

Does not occur in nature. Similar to iodine. Produced by bombarding bismuth with alpha particles.

Since its isotopes have such short half-lives there are no commercially significant compounds of astatine.

Radon

Rn

86

GN

CFC

-222.0176

2,8,18,
32,18,
8

[Xe] 4f14 5d10 6s2 6p6

0

-71°C

-61.8°C

0

--

--

1.34

50.5 cm³/mol

10.7485 V

--

--

0

0.00973

0.09

16.40

2.890

--

0.0000364

--

--

--

 

 

Variation of the name of another element, radium.

Colorless, odorless, tasteless, radioactive, heavy, GN.

Fredrich Ernst Dorn

1898

Germany

Formed from the decay of radium in the earths crust.

Used to treat some forms of cancer.

Francium

Fr

87

MA

CBC

-223.0197

2,8,18,
32,18,
8,1

[Rn] 7s1

1

27°C

677°C

0.7

--

--

--

--

--

--

--

1

--

--

--

--

0.03

0.15

2

--

--

 

 

Named for France, the nation of its discovery.

Highly rare and unstable, radioactive metal.

Marguerite Derey

1939

France

Formed by decay of actinium. Chemical properties similar to cesium. Decays to radium or astatine.

Since its isotopes have such short half-lives there are no commercially significant compounds of francium.

Radium

Ra

88

MTA

CBC

-226.0254

2,8,18,
32,18,
8,2

[Rn] 7s2

2

700°C

1140°C

0.9

--

1.62 (+2)

--

45.20 cm³/mol

5.2789 V

10.148 V

--

2

5

0.12

--

--

--

0.186

16

8

--

 

 

Latin: radius (ray).

Silvery-white metal. Intensely radioactive.

Pierre and Marie Curie

1898

France

Found in uranium ores at 1 part per 3 million parts uranium.

Used in treating cancer because of the gamma rays it gives off.

Actinium

Ac

89

MT

CFC

-227.0278

2,8,18,
32,18,
9,2

[Rn] 6d1 7s2

--

1050°C

3200°C (±300°C)

1.1

--

--

--

22.54 cm³/mol

5.17 V

12.126 V

--

3

10.07

--

--

--

--

0.12

34

--

5.311

 

 

Greek: akis, aktinos (ray).

Heavy, silvery-white, very radioactive metal

André Debierne

1899

France

Extremely rare, found in all uranium ores. Usually obtained by treating radium with neutrons in a reactor.

It has no significant commercial applications.

Thorium

Th

90

TR

CFC

232.0381

2,8,18,
32,18,
10,2

[Rn] 6d2 7s2

4

1750°C

4000°C

1.3

1.65

1.05 (+4)

--

19.9 cm³/mol

6.08 V

11.504 V

20.003 V

4

11.7

0.12

514.40

16.10

0.0653

0.540

73

11.0

5.0847

 

 

Named for Thor, Norse god of thunder.

Heavy, gray, soft, malleable, ductile, radioactive metal.

Jöns Berzelius

1828

Sweden

Found in various minerals like monazite and thorite.

Used in making strong alloys. Also in ultraviolet photoelectric cells. It is a common ingredient in high-quality lenses. Bombarded with neutrons make uranium-233, a nuclear fuel.

Protactinium

Pa

91

TR

O

231.03588

2,8,18,
32,20,
9,2

[Rn] 5f2 6d1 7s2

4,5

1600°C

--

1.5

--

--

--

15.0 cm³/mol

5.89 V

--

--

(5),4

15.4

0.12

--

12.30

0.0529

0.47

100

9.7

3.925

 

3.238

Greek: proto and actinium (parent of actinium); it forms actinium when it radioactively decays.

Very rare, silvery-white, extremely radioactive metal.

Fredrich Soddy, John Cranston, Otto Hahn, Lise Meitner

1917

England/France

Does not occur in nature. Found among fission products of uranium, thorium, and plutonium.

It has no significant commercial applications.

Uranium

U

92

TR

O

238.0289

2,8,18,
32,21,
9,2

[Rn] 5f3 6d1 7s2

2,3,4,5,6

1132°C

3818°C

1.38

1.42

.81 (+6)

--

12.59 cm³/mol

6.1941 V

--

--

(6),5,4,3

18.9

0.12

477.0

8.520

0.0380

0.276

186

13.9

2.8538

5.8697

4.9550

Named for the planet Uranus.

Silvery-white, dense, ductile, malleable, radioactive metal.

Martin Klaproth

1789

Germany

Occurs in many rocks, but in large amounts only in such minerals as pitchblende and carnotite.

For many centuries it was used as a pigment for glass. Now it is used as a fuel in nuclear reactors and in bombs.

Neptunium

Np

93

TR

O

-237.0482

2,8,18,
32,22,
9,2

[Rn] 5f4 6d1 7s2

3,4,5,6

640°C

3902°C

1.36

--

--

--

11.62 cm³/mol

6.2657 V

--

--

6,(5),4,3

20.45

0.12

--

5.190

0.00822

0.063

900

28

6.663

4.723

4.887

Named for the planet Neptune.

Rare, silvery radioactive metal.

E.M. McMillan, P.H. Abelson

1940

United States

Produced by bombarding uranium with slow neutrons.

It has no significant commercial applications.

Plutonium

Pu

94

TR

M

-244.0642

2,8,18,
32,24,
8,2

[Rn] 5f6 7s2

3,4,5,6

641°C

3232°C

1.28

--

--

--

12.32 cm³/mol

6.06 V

--

--

6,5,(4),3

19.8

0.13

344.0

2.840

0.00666

0.0674

97

46.7

6.183

4.822

10.963

Named for the planet Pluto.

Silvery-white, extremely radioactive artificially produced metal.

G.T.Seaborg, J.W.Kennedy, E.M.McMillan, A.C.Wohl

1940

United States

Found rarely in some uranium ores. Made by bombarding uranium with neutrons.

Used in bombs and reactors. Small quantities are used in thermo-electric generators.

Americium

Am

95

TR

H

-243.0614

2,8,18,
32,25,
8,2

[Rn] 5f7 7s2

2,3,4,5,6

994°C

2607°C

1.3

--

--

--

17.86 cm³/mol

5.993 V

--

--

6,5,4,(3)

13.6

0.11

--

14.40

0.022

0.1

--

7.1

3.4681

 

11.240

Named for the American continent, by analogy with europium.

Silvery-white, artificially produced radioactive metal.

G.T.Seaborg, R.A.James, L.O.Morgan, A.Ghiorso

1945

United States

Produced by bombarding plutonium with neutrons.

Americium-241 is currently used in smoke detectors.

Curium

Cm

96

TR

H

-247.0703

2,8,18,
32,25,
9,2

[Rn] 5f7 6d1 7s2

3,4

1340°C

--

1.3

--

--

--

18.28 cm³/mol

6.02 V

--

--

(3),4

13.5

--

--

15.0

--

0.1

--

--

--

 

 

Named in honor of Pierre and Marie Curie.

Silvery, malleable, synthetic radioactive metal.

G.T.Seaborg, R.A.James, A.Ghiorso

1944

United States

Made by bombarding plutonium with helium ions. So radioactive it glows in the dark.

It has no significant commercial applications.

Berkelium

Bk

97

TR

??

-247.0703

2,8,18,
32,26,
9,2

[Rn] 5f9 7s2

3,4

--

--

1.3

--

--

--

--

6.23 V

--

--

4,(3)

--

--

--

--

--

0.1

--

--

--

 

 

Named after Berkeley, California the city of its discovery.

Synthetic radioactive metal.

G.T.Seaborg, S.G.Tompson, A.Ghiorso

1949

United States

Some compounds have been made and studied. Made by bombarding americium with alpha particles.

It has no significant commercial applications.

Californium

Cf

98

TR

??

-251.0796

2,8,18,
32,28,
8,2

[Rn] 5f10 7s2

--

--

--

1.3

--

--

--

--

6.30 V

--

--

4,(3)

--

--

--

--

--

0.1

--

--

--

 

 

Named after the state and University of California.

Synthetic radioactive metal. Powerful neutron emitter.

G.T.Seaborg, S.G.Tompson, A.Ghiorso, K.Street Jr.

1950

United States

Made by bombarding curium with helium ions.

It has no significant commercial applications.

Einsteinium

Es

99

TR

??

-252.083

2,8,18,
32,29,
8,2

[Rn] 5f11 7s2

--

--

--

1.3

--

--

--

--

6.42 V

--

--

(2),3

--

--

--

--

--

0.1

--

--

--

 

 

Named in honor of the scientist Albert Einstein.

Synthetic radioactive metal.

Argonne, Los Alamos, U of Calif

1952

United States

Made by bombarding uranium with neutrons.

It has no significant commercial applications.

Fermium

Fm

100

TR

??

-257.0951

2,8,18,
32,30,
8,2

[Rn] 5f12 7s2

--

--

--

1.3

--

--

--

--

6.50 V

--

--

3

--

--

--

--

--

0.1

--

--

--

 

 

Named in honor of the scientist Enrico Fermi.

Synthetic radioactive metal.

Argonne, Los Alamos, U of Calif

1953

United States

Produced by bombarding lighter transuranium elements with still lighter particles or by neutron capture.

It has no significant commercial applications.

Mendelevium

Md

101

TR

??

-258.0984

2,8,18,
32,31,
8,2

[Rn] 5f13 7s2

2,3

--

--

1.3

--

--

--

--

6.58 V

--

--

2,3

--

--

--

--

--

0.1

--

--

--

 

 

Named in honor of the scientist Dmitri Ivanovitch Mendeleyev, who devised the periodic table.

Synthetic radioactive metal.

G.T.Seaborg, S.G.Tompson, A.Ghiorso, K.Street Jr.

1955

United States

Made by bombarding einsteinium with helium ions.

It has no significant commercial applications.

Nobelium

No

102

TR

??

-259.1011

2,8,18,
32,32,
8,2

[Rn] 5f14 7s2

--

--

--

1.3

--

--

--

--

6.65 V

--

--

2,3

--

--

--

--

--

0.1

--

--

--

 

 

Named in honor of Alfred Nobel, who invented dynamite and founded Nobel prize.

Synthetic radioactive metal.

Nobel Institute for Physics

1957

Sweden

Made by bombarding curium with carbon-13

It has no significant commercial applications.

Lawrencium

Lr

103

TR

??

-262.1098

2,8,18,
32,32,
9,2

[Rn] 5f14 6d1 7s2

3

--

--

--

--

--

--

--

--

--

--

3

--

--

--

--

--

0.1

--

--

--

 

 

Named in honor of Ernest O. Lawrence, inventor of the cyclotron.

Synthetic radioactive metal.

A.Ghiorso, T.Sikkeland, A.E.Larsh, R.M.Latimer

1961

United States

Produced by bombarding californium with boron ions.

It has no significant commercial applications.

Rutherfordium

Rf

104

MT

??

-261.1089

2,8,18,
32,32,
10,2

[Rn] 5f14 6d2 7s2

--

--

--

--

--

--

--

--

--

--

--

4

--

--

--

--

--

0.23

--

--

--

 

 

Named in honor of Ernest Rutherford

Synthetic radioactive metal.

A. Ghiorso, et al

1969

United States

Made by bombarding californium-249 with beams of carbon-12 and 13, which produced an isotope with half lives of 4+ and 3 sec.

It has no significant commercial applications.

Hahnium

Ha

105

MT

??

-262.1144

2,8,18,
32,32,
11,2

[Rn] 5f14 6d3 7s2

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

0.58

--

--

--

 

 

Named in honor of Otto Hahn

Synthetic radioactive metal.

A. Ghiorso, et al

1970

United States

Made by bombarding californium-249 with a beam of nitrogen-15

It has no significant commercial applications.

Seaborgium

Sg

106

MT

??

-263.1186

2,8,18,
32,32,
12,2

[Rn] 5f14 6d4 7s2

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

 

 

Named in honor of Glenn Seaborg, American physical chemist known for research on transuranium elements.

Synthetic radioactive metal.

Soviet Nuclear Research/ U. of Cal at Berkeley

1974

USSR/United States

Made by bombarding californium-249 with oxygen-18.

It has no significant commercial applications.

Nielsbohrium

Ns

107

MT

??

-262.1231

2,8,18,
32,32,
13,2

[Rn] 5f14 6d5 7s2

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

 

 

Named in honor of Niels Bohr

Synthetic radioactive metal.

Heavy Ion Research Laboratory (HIRL)

1976

Germany

Obtained by bombarding bismuth-204 with chromium-54.

It has no significant commercial applications.

Hessium

Hs

108

MT

??

-265.1306

2,8,18,
32,32,
14,2

[Rn] 5f14 6d6 7s2

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

 

 

Named in honor of Henri Hess, Swiss born Russian chemist known for work in thermodydamics.

Synthetic radioactive metal.

Heavy Ion Research Laboratory (HIRL)

1984

Germany

Formed by the bombardment of lead-208 with iron-58.

It has no significant commercial applications.

Mietnerium

Mt

109

MT

??

-266.1378

2,8,18,
32,32,
15,2

[Rn] 5f14 6d7 7s2

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

 

 

Named in honor of Lise Mietner

Synthetic radioactive metal.

Heavy Ion Research Laboratory (HIRL)

1982

Germany

Obtained by bombarding bismuth-209 with iron-58.

It has no significant commercial applications.

Unnunnilium

Unn

110

MT

??

-268

2,8,18,
32,32,
16,2

[Rn] 5f14 6d9 7s1

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

 

 

Un (one) nun (one) nilium (zero)

Synthetic radioactive metal.

Heavy Ion Research Laboratory (HIRL)

1994

Germany

Made by bombarding bismuth-209 with cobolt-59.

It has no significant commercial applications.

Unnununium

Unu

111

MT

??

-269

2,8,18,
32,32,
17,2

[Rn] 5f14 6d10 7s1

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

 

 

Un (one) nun (one) unium (one)

Synthetic radioactive metal.

Heavy Ion Research Laboratory (HIRL)

1994

Germany

Made by bombarding bismuth-209 with nickel-60.

It has no significant commercial applications.

 

 

- F -



- G -

 

- H -

 

- I -

 

- J -

 

 

- K -

 

 

- L -

 

- M -

 

- N -

 

- O -

 

 

- P -

 

- Q -

 

 

- R -

 

 

- S -





 

- T -

- U -



- V -

 

 

 

- W -

 

 

- X -

 

 

- Y -

 

 

- Z -

à suivre...


Retour menu sup